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a b s t r a c t

The new methods applicable for calibration of indicator electrodes, based on standard addition and stan-
dard subtraction methods, are suggested. Some of the methods enable the slope of an indicator electrode
and equivalence volume Veq to be determined simultaneously from a single set of potentiometric titra-
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eywords:
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ndicator electrodes

tion data. Some other methods known hitherto were also taken into account. A new model, based on a
standard addition method, applicable also in nonlinear range for the ISE slope (S) is suggested, and its
applicability was confirmed experimentally in calibration of calcium ISE.

© 2010 Elsevier B.V. All rights reserved.
tandard subtraction
tandard addition

. Introduction

The calibration of indicator electrodes is of primary importance
n potentiometry [1]. Potentiometric methods applying indicator
lectrodes offer several advantages over other methods of analy-
is. They are non-destructive, can easily be automated, and little
r no sample preparation is required. This problem was raised
ecently [2,3], in context with redox indicator electrodes. The theo-
etical basis for these methods, involved with redox and non-redox
ystems, were reviewed elsewhere [4,5]. The new proposals for
alibration of redox electrodes, based principally on the modified
ran (I and II) methods, were also suggested [2,3,6,7]. Although the
riginal Gran II method (abbr. G(II)) [8] has been employed more
xtensively than the original Gran I method (abbr. G(I)) [9], the pos-
ibilities and advantages offered by the modified Gran I method
ppeared to be valuable as well [2,3,7].

This paper provides further modifications in the multiple stan-
ard addition (MSA) and multiple standard subtraction (MSS)
ethods, completing earlier approaches, presented in [10] and
ater [2,3,6,7]. A typical example of MSS is provided by G(I) and
(II) methods. The MSA appears to be a useful, complementary

echnique towards MSS. In MSA and MSS, the real slope (S) of
n indicator electrode and equivalence volume (Veq) are deter-

∗ Corresponding author. Tel.: +48 12 628 21 77.
E-mail addresses: michalot@o2.pl, michalot@chemia.pk.edu.pl (T. Michałowski).

039-9140/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.talanta.2010.11.067
mined simultaneously, from the single titration curve, and resolved
with use of the least squares (LS) method [11,12], or an iterative
computer program, as presented elsewhere [2–7]. The next modi-
fication applies a transformation suggested by Li [13], designed for
simultaneous determination of Veq and S; in these modifications, an
iterative computer program is needed. In the last part of the paper,
a two-parametric function is applied for modeling the parameters
for fluoride ISE and calcium ISE, also in the concentration range
where the assumption of the S constancy is not valid.

2. Some calibration methods

In MSA, V mL of titrant (T) with C mol/L A (as the standard
species) is added into V0 mL of titrand (D), with C0 mol/L A (as the
analyte) and potential E is registered in the system with indicator
electrode reversible towards A. In MSS, the A concentration in D is
decreased by addition of C mol/L standard solution of B ( /= A) that
reacts with A, e.g. B = MnO4

− reacts with A = Fe(II) species in acidic
(H2SO4) media [2,3].

In potentiometry, MSA and MSS are applicable in the cases
where a signal (potential, E) registered in the measuring device is
selective towards an analyte A, i.e. a change in the signal readout,
affected by standard addition, can be ascribed only to A.
2.1. Standard addition methods

The standard addition methods are realized in single (SSA), dou-
ble (DSA) or multiple (MSA) versions. Some modifications of the
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Nomenclature

A analyte
B reagent in MSS
C concentration (mol/L) of A or B in T
C0 concentration (mol/L) of A in D
D titrand
E potential (mV)
LS least squares method
MSA multiple standard addition
MSS multiple standard subtraction
S slope
T titrant
V volume [mL] of T
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ethods applied hitherto for calibration of redox indicator elec-
rodes [2,3] were also suggested.

.1.1. Single and double addition
In SSA, the potential is measured for the sample itself and after

ddition of V mL of the standard solution. In the simplest case we
rite

= P + S log
C0V0 + CV
V0 + V (1)

nd for V = V1 = 0, E1 = P + S logC0, where S > 0 for cationic ISE, S < 0
or anionic ISE; P involves all constant parameters referred to the
lectrode system. Then we get

0 = C V/V0

(1 + V/V0) × 10�E/S − 1
(2)

he SSA needs the preliminary knowledge of the S value. This neces-
ity is omitted in DSA (DKAM [14]), where three E-readings are
ade: for the sample itself, of volume V0 with unknown concen-

ration C0 of an analyte A, and after additions of two consecutive
ortions,�Vi (i = 1, 2), of the stock solution of A, with known con-
entration C. If�V1 +�V2 � V0, we have [14]

log(1 + (�C1 +�C2)/C0)
log(1 +�C1/C0)

− E3 − E1

E2 − E1
= 0 (3)

here�Ci = C·�Vi/V0 (i = 1, 2), E1 refer to the sample tested. Eq. (3)
s resolvable for C0 with use of any iterative computer program [15]
r simply, according to a common zeroing procedure. The errors
nvolved with DKAM were considered in [16].

.1.2. Multiple addition
The MSA method is based on addition of N successive portions of

he standard solution. As in SSA and DKA methods, the first poten-
ial readout, E1, refers to V1 = 0. The set of experimental points {(Vj,
j) | j = 1, . . ., N}, where Vj+1 − Vj =�V = const. is the basis for calcu-
ation of [17]

0 = (N − 1)C�V
3V0

∑
(2N − 3j + 2)yj∑
(2j − N − 1)yj

(4)

here

j = (V0 + (j − 1)�V) × 10Ej/S (5)
see Appendix 1). An increasing of the number (N) of experimen-
al points {(Vj, Ej) | j = 1, . . ., N} within a given concentration range

akes a growth in precision of the fit, in principle. Nevertheless,
n (5) it is assumed that S is known beforehand. Such a case occurs
Fig. 1. The plots of simulated functions (12), obtained for different pre-
assumed S′ values from the set of points {(Vj , Ej)| j = 1, . . ., N}, where
Ej = 400 + 59 log [Vj/(10 − Vj)], Vj ∈ 〈3.0, 9.5〉, �V = 0.25 and Ej rounded to 3rd,
2nd, 1st, and 0th decimal point, at error-free Vj-values [19].

also in the formula referred to the G(II) method [8], considered as
the standard subtraction method, where the Nernstian slope

S0 = RT

zF
ln 10 (6)

equal S0 = 59.16/z mV at 25 ◦C, was commonly applied; z = ±1,±2,. . .
However, such an approach may provide, in some instances, inad-
missibly high systematic errors of analyses [3]; those related to G(I)
method [9], were indicated in Ref. [7].

2.2. Simultaneous determination of S and Veq

2.2.1. Ivaska method
The principle of the Ivaska method [18] was intended to be

applied to the function

y = V × 10−E/S = �2(Veq − V) (�2 = constant) (7)

applicable, e.g. for potentiometric titration of Fe(II) species with
permanganate in acidic (H2SO4) media, made according to G(II)
method [3] and valid at V < Veq, where Veq is the equivalence vol-
ume in the titration. Applying it to the set of N points {(Vj, Ej)
| j = 1, . . ., N}, registered at Vj+1 − Vj =�V = const, the S-value is con-
sidered as the real root of the equation Y = Y(S) = 0, referred to the
nonlinear function

Y = Y(S) = y1 − 2
N−1∑
j=2

(−1)jyj + yN (8)

where

yj = Vj × 10−Ej/S (9)

One should notice that the primary Ivaska method [18] has been
applied to the function y = (V0 + V) × 10E/S, compare with (7).

As results from Fig. 1, the zeroing procedure applied to Eq. (8)
could provide a pre-assumed/expected S-value (here: S = 59 mV)

only under assumption that all experimental points (Vj, Ej)
are registered with high accuracy for Ej, ca. ±0.01 mV or bet-
ter, at error-free Vj values. However, such accuracies are not
attainable in real potentiometric titrations; �E = ± 0.01 mV refers
to �pA =�E/S ≈ ±0.00017 for monovalent ions. One should be
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oticed that the line (8) referred to 0th approximation assumed
or Ej values (mV) does not intersect the line Y = 0.

.2.2. Modifications of Li method
The primary form of Li method [13] is involved with application

f the identity

1
S

≡ 1
S• +

(
1
S

− 1
S•

)
= 1
S• + 1

�
(10)

here

= S•S
S• − S (11)

here S• is the pre-assumed (arbitrarily chosen) value for the slope
f the indicator electrode. On the basis of experimental data {(Vj, Ej)
j = 1,. . ., N} and Eqs. (7), (10) and (11), one can suggest two modi-
cations of the Li method (see Appendix 2). The first modification,

s based on searching the Veq and � values minimizing the sum of
quares

S =
N−1∑
j=1

(
Veq − Vj+1

Veq − Vj

(
1 + qj

�

)
− j

)2

(12)

here

j = Vj+1

Vj
10−(Ej+1−Ej)/S• , qj = ln 10(Ej+1 − Ej) (13)

In (12), the approximation

x ∼= 1 + x (14)

here x = qj/�, has been applied. In the second (more accurate)
odification, an approximation [7,10]

x ∼= 1 + x + x2

2
= 1 + x

(
1 + x

2

)
∼= 1 + x

1 − x/2
= 2 + x

2 − x (15)

as been suggested, see Fig. 2. In this option, Veq and � values
inimize the sum of squares

N−1∑(
Veq − Vj+1 2�+ qj

)2
S =
j=1

Veq − Vj 2�− qj
− j (16)

Minimization of the functions: (12) and (16) is realized accord-
ng to iterative computer programs. After searching the � value, the
83 (2011) 1530–1537

true S-value is found from the relation

S = S• × �
S• + � (17)

obtained from Eq. (11).
The approximation (14) was applied by Li [13]. However, the

values

q′
j = ln 10(Ej+1 − E1) (18)

involving the potential changes referred to the first point (V1, E1);
this provides a serious limitation in the Li method, where only a
few first points {(Vj, Ej) | j = 1, . . ., N}, where |EN − E1|/�� 1, can be
applied in the calculations. In order to extend the potential range
for calculation purposes, the pre-assumed S• value should be put
closely to the true S value. In such a case, � assumes higher val-
ues, that enables the inequality |EN − E1|/�� 1 to be fulfilled within
a wider �E range; e.g. at S• = 59.16 mV and S = 55 mV, from (11)
we get �= 782. The change �E = Ej+1–Ej = 10 mV in E-value gives
�E/�= 0.0128. Then we have

100.0128 = eln 10×·0.0128 = e0.0294 = 1 + 0.0294 + 0.0004 + · · · (19)

Instead of (18), the qj values, related to successive portions
Vj+1 − Vj of titrant (Eq. (13)) were applied in both modifications.
Moreover, referring again to Fig. 2, we see that y4(x) fits y1(x)
much better than y2(x), within defined x-range. It must be noticed,
however, that the approximation of the function y1(x) by another
approximating function is not required if an iterative computer
program be applied.

2.3. The new calibration methods

2.3.1. Method I
This method enables to calculate the slope value at prior knowl-

edge of C0 and C values

Sj = �j
C0V0 + CV∗

j

C − C0
(20)

at each experimental point from the set {(Vj, Ej), j = 1, . . ., N}, where:

�j =
V0 + V∗

j

V0

Ej+1 − Ej
Vj+1 − Vj

ln 10 (21)

V∗
j = Vj + Vj+1

2
(22)

(see Appendix 3). Note that �j > 0 for cationic ISE, �j < 0 for anionic
ISE, and then Sj ≈ −S0 for fluoride ISE, Sj ≈ S0/2 for calcium ISE. Then
we calculate

S = 1
N

∑N

j=1
Sj (23)

2.3.2. Method II
In this method, Veq and S are calculated from the formulae:

Veq =
∑

(V∗
j

)2 ∑
yj −

∑
Vj

∗ ∑
yj · V∗

j∑
V∗
j

∑
yj − N

∑
yjV

∗
j

(24)

N
∑

(Vj
∗)2 − (

∑
Vj

∗)2
S = ln 10 × ∑
(V∗
j

)2 ∑
yj −

∑
V∗
j

∑
yjV

∗
j

(25)

where
∑

= ∑N−1
j−1 , and N is the number of experimental points

taken for calculations.



alanta

2

f

E

i
p
C
t

e

l
p
w
f

l

E

a

E

D
r
o

E

A

E

a

S

i
v

r
o
r
E
M
c
r
o
(
t

S

T. Michałowski et al. / T

.3.3. Method III
To describe quantitatively a nonlinear E = E(pA) relationship, the

unction

= P − S

1 + 10pA−pD
pA (26)

s suggested, where P, S and pD are constant parameters,
A = −log[A]; [A] = (C0V0 + CV)/(V0 + V) for addition of V mL of
mol/L A into V0 mL C0 mol/L A according to SAM; A = F−, Ca2+. Note

hat the fraction

S

1 + 10pA−pD
(27)

quals S for pA � pD.
The points {(pAj, Ej) | j = 1, . . ., N} should involve the non-

inearity region of E vs. pA dependence. On the other side, this set of
oints should involve a subset covering the linearity range. Other-
ise, the S value obtained from calculations may differ significantly

rom the one expected on the basis of Eq. (5).
In order to omit P on the first stage of the calculation procedure,

et us take (pAi, Ei) as the reference point. From (26) we have

i = P − S

1 + 10pAi−pD
pAi (26a)

nd then

− Ei =
S

1 + 10pAi−pD
pAi −

S

1 + 10pA−pD
pA (28)

enoting (S(i), pD(i)) as the values for (S, pD) pair obtained at the
eference point (pAi, Ei) according to a procedure specified below,
ne can rewrite (28) into the form

− Ei =
S(i)

1 + 10pAi−pD(i)
pAi −

S(i)

1 + 10pA−pD(i)
pA (28a)

t (pA, E) = (pAj, Ej) we get the regression equation

j − Ei =
S(i)

1 + 10pAi−pD(i)
pAi −

S(i)

1 + 10pAj−pD(i)
pAj + εij (28b)

nd then the sum of squares

S(i) =
N∑
j=1

εij
2

=
N∑
j=1

(
Ej − Ei − S(i)

(
pAi

1 + 10pAi−pD(i)
− pAj

1 + 10pAj−pD(i)

))2

(29)

s formulated. At any i value (i = N, N − 1, . . ., 2, 1), the (S(i), pD(i))
alues, where SS(i) = min, are calculated.

Minimization of (29) proceeds according to iteration procedure,
ealized with use of the computer program. The (reverse) sequence
f the points results from the fact that the experimental points
eferred to lower [A], i.e. higher pX values, appear more “scattered”
-values; the point (pAN, EN) refers here to the lowest pA-value.
oreover, the procedure applied avoids the consequences of a

hoice of only one reference point, that may appear to be a “non-
epresentative” against other points. The pairs (S(i), pD(i)) of the
ptimized parameters are then arranged in sequence: (S(N), pD(N)),
S(N − 1), pD(N − 1)), . . ., (S(1), pD(1)). Then, for n ≤ N first points of

his sequence, the values:

= Sn = 1
n

N−n+1∑
i=N

S(i), pDn = 1
n

N−n+1∑
i=N

pD(i) (30)
83 (2011) 1530–1537 1533

are calculated for different n, and then a convergence of Sn and pDn

values can be considered. The P value can be calculated from the
formula

P = Pn = 1
n

N−n+1∑
j=N

(
Ej +

SnpXj
1 + 10pXj−pDn

)
(31)

obtained on the basis of Eq. (26). In experimental part, the (S, pD,
P) = (SN, pDN, PN) values, obtained at n = N, are calculated.

The standard deviations (s) were referred to particular results,
not to their mean values; namely

s =
√
s2, where s2 = (n− 2)−1

N−n+1∑
j=N

(ϕj − ϕ(pXj))
2 (32)

where ϕ = P, S, pD.
In this paper, potentiometric titrations were made for cali-

bration of platinum, fluoride and calcium indicator electrodes.
Calibrations of fluoride and calcium ISE’s were made according to
MSA. The MSS was applied for calibration of Pt electrode used in
the redox titration. Different calibration methods specified above
were tested.

3. Experimental

3.1. Apparatus and reagents

Redox titrations were made in thermostated (25.0 ± 0.1 ◦C) sys-
tem, with use of Pt indicator electrode (Radiometer P 101) and
calomel (Metrel 40563) reference electrode. Before the use, the Pt
electrode was cleaned in ultrasound bath.

The measurements made with use of calcium and fluo-
ride ISE’s (Eutech Instruments) were carried out on a Cerko
Lab System potentiometer (resolution ±0.03 mV) equipped with
a self-constructed measuring cell, a magnetic stirrer, in a
temperature-controlled (resistance sensor Pt 1000, ±0.1 ◦C) closed
system, protected against an effect of carbon dioxide.

Preparations of (NH4)2Fe(SO4)2·6H2O, KMnO4, CaCl2·5H2O, NaF,
KCl, H2SO4, CH3COOH and CH3COONa (all of p.a. purity grade,
>99.5%) were purchased from MERCK. Freshly prepared, doubly
distilled water with conductivity approx. 0.18 �S/cm, was used for
preparation of stock solutions: NaF (1.0 × 10−3 mol/L) and CaCl2
(5.0 × 10−3 mol/L) and acetate buffer (pH 5.0), obtained by mix-
ing 5.9 ml of 0.2 mol/L acetic acid and 14.1 mL of 0.2 mol/L sodium
acetate.

3.2. Procedures

The Pt electrode was applied for titration of V0 = 50 mL of
C0 = 0.01 mol/L (NH4)2Fe(SO4)2·6H2O + H2SO4 (1.0 mol/L) as D with
V mL of C = 0.02 mol/L KMnO4 as T, added in portions�V = 0.25 mL.
The results obtained in these titrations were applied to: method
II (Section 2.3.2), the Ivaska method (Section 2.2.1), the modified
forms of the Li method (Section 2.2.2), and to the method based on
calculation of the linear correlation coefficient (R) [3] value.

Working solutions used for the fluoride and calcium ISE calibra-
tion were prepared in volumetric flasks (Vf = 25.0 mL), as indicated
in Table 1. After introducing the corresponding stock solutions and

buffer or KCl solution, the flasks were filled up to the mark with
distilled water. Then V0 = 2.000 mL of D was titrated with V mL of
the corresponding T. The (D, T) pairs No. 1, 3, 4 were applied to cal-
ibration according to method III (Section 2.3.3). The (D, T) pair No.
2 was applied to the method I (Section 2.3.1).
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Table 1
Composition of (D, T) pairs of solutions (indicated by rows 1–4) prepared in Vf = 25.0 mL flasks.

No. Stock solution C0 (mol/L) in D C (mol/L) in T Acetate buffer (mL) KCl conc. (mol/L)

D T D T

1 NaF 5.0 × 10−6 5.0 × 10−4 10 10 0 0
2 CaCl2 5.0 × 10−6 5.0 × 10−4 0 0 0.1 0.1
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0,99935

0,9994

0,99945

0,9995

0,99955

0,9996

0,99965

0,9997

0,99975

0,9998

0,99985

59,55958,55857,55756,5

S

a
b

R2 
   

 

T
T

N

ig. 3. The experimental points {(Vj , Ej) | j = 1, . . ., N} obtained from potentiometric
itration of (NH4)2Fe(SO4)2 (0.01000 mol/L) with KMnO4 (0.02000 mol/L) in acidic
H2SO4, 1.0 mol/L) medium.

. Results and discussion

Three titrations of Fe(II) with potassium permanganate in acidic
H2SO4) media (MSS method) were made under identical a priori
onditions. The curve of titration no. 1 (Table 2) is presented in
ig. 3. On the stage of data handling, the points {(Vj, Ej)} were con-
erted into {(V∗

j
, yj)}, see Eqs. (22) and (4.4) and Fig. 4. Several first

oints (V∗
j

, yj) were considered as more scattered, also in repeated
itrations (for unknown reasons), and then omitted from calcula-
ions. The set of points in No. 1a is the subset of points in No. 1. The
itrations No. 2 and 3 were also done for confined set of points, as
n No. 1a. The line y = 0.039391 − 0.003859V* (4.5) in Fig. 4 refers to
o. 1 in Table 2. The values for Veq (Eq. (24)) are not far from the
xpected value 10.000 mL, and the values for S (Eq. (25)) are similar.
t should be noted that some preliminary tests aiming to overcome
he dissipation effect at the first titration points, were also done.

The Li method, expressed by the formulae (12) and (16), has been
pplied for the results obtained in the first titration (Table 2, No. 1
nd 1a). The results obtained for Veq (Table 3) are nearly identical,
ut biased with positive error ca. 2%. The S-values obtained accord-

ng to this method are somewhat greater than those presented in

able 2.

The data in Table 2 were also considered from the viewpoint of
he Ivaska method [18]. None of the series of experimental data,
hen applied to Eq. (8), gave the results required, however, as

xpected from Fig. 1, i.e. the related curves Y = Y(S) (Eq. (8)) do not

able 2
he results of repeated titrations, obtained on the basis of (24) and (25) for (NH4)2Fe(SO4

No. N 〈V1, VN〉 a

1 34 〈1.0, 9.5〉 0.03939
1a 27 〈3.0, 9.5〉 0.04037
2 27 〈3.0, 9.5〉 0.03925
3 27 〈3.0, 9.5〉 0.03918

–number of experimental points involved in calculations;〈V1, VN〉–volume (mL) interval
Fig. 5. The R2 (Eq. (33)) vs. S′ values pre-assumed for S in Eq. (11).

intersect the line Y = 0; it refers both to the points taken from V-
intervals:〈1.0, 9.5〉 and 〈3.0, 9.5〉. The remark involved with Fig. 1
was then confirmed.

The results presented in Fig. 5 (Table 2, No. 1, 1a) were also taken
for evaluation of S on the basis of the linear correlation coefficient
(R) value [3], related to Eq. (7). Setting different values S′ for S in Eq.

(7), and applying it to the points {(Vj, yj) | j = 1, . . ., N}, one can find

)2 + H2SO4/KMnO4 system.

b Veq (mL) S (mV)

0.003859 10.091 58.18
0.004024 10.032 58.04
0.003902 10.060 58.66
0.003892 10.066 58.78

for T considered in calculations;�V = 0.25 mL.
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Table 3
The results obtained according to the modified Li methods from the points presented in Fig. 3.

No. S′ Eq. (12) Eq. (16)

t

R

s
〈
5
T
1

fl
t
t
5
i
P
f
c
|
i
F
b

[
u
t

a
a
{
f
p
m
b

a
r
w
p
p

Veq �

1 60 10.225 8823
1a 65 10.231 717

he S value corresponding to the R2 value closest to 1, where

2 =
(∑

(Vj − V̄)(yj − ȳ)
)2

∑
(Vj − V̄)

2 ∑
(yj − ȳ)2

(33)

ee Eq. (13). The curves in Fig. 5 refer to V-intervals: (a) 〈3.0, 9.5〉, (b)
1.0, 9.5〉,�V = 0.25. The S values thus obtained are: 58.0 for (a) and
8.15 for (b). The S-values are close to ones presented in Table 2.
he related Veq values found according to LS applied to Eq. (7) are:
0.080 mL for (a) and 10.058 mL for (b).

The formula (20), was applied to MSA realized with use of
uoride ISE, in acetate buffer media (see Table 1, No. 2). In the
itration, V0 = 2 mL of C0 = 5 × 10−6 mol/L NaF + acetate buffer was
itrated with V mL of C = 5 × 10−4 mol/L NaF+ acetate buffer (pH
.0) in D and T. The curve (Fig. 6a) was also tested accord-

ng to formulae (29)–(31) and the following data were obtained:
= PN = −149.5 ± 1.1 mV; S = SN = 60.59 ± 0.30; pD > 10. High value

or pD testifies on account of the opinion that the related curve
an be considered as the straight line (Fig. 6b). All points {(Vj, Ej)
j = 1, . . ., N) in Fig. 6a were taken for calculations realized accord-
ng to method I. The results obtained from Eq. (20) are presented in
ig. 6c. Mean value S = 1/59

∑59
i=1Si = 59.75 mV (Eq. (23)) differs

y 0.84 from 60.59.
Within the pH-range assumed, the validity of approximation

A] = CA is required; e.g. at pH ca. 5, in the D + T system tested with
se of fluoride ISE, we have [HF]/[F−] = 103.17−pH � 1 [20], and then
he approximation [F−] = CF is valid.

The S(i) values, obtained according to the method I, are strongly
ffected by small random (local) fluctuations of E-values registered
t particular points (Vj, Ej). However, a large number of the points
(i, S(i)) (i = 1, . . ., N)} provides quite accurate mean S-values, even
or larger scattering of the points along the ordinate axis than one
resented in Fig. 7. This fact was already confirmed [3] in the tests
ade with use of generator of normally distributed random num-

ers [14,21].
Method III was applied for determination of parameters: P, S
nd pD referred to titration in the system No. 4 in Table 1. The
esults obtained are presented in Fig. 7. Mean values for P, S and pD
ere there as follows: P = PN = 441.56 ± 0.62; S = SN = 27.80 ± 0.15;

D = pDN = 6.378 ± 0.008 (see Eqs. (29)–(31). An effect of the starting
oint (Vi, Ei) applied in Eq. (28) is not distinctly marked. The approx-
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Fig. 6. The (a) E vs. V, (b) E vs. pF = −log[F−], (c) S(i) vs. i (Eq. (31)) re
S Veq � S

59.59 10.217 8753 59.59
59.60 10.217 713 59.57

imating function (24) fits the (converted) experimental points very
well (Fig. 7b).

It should be noticed that S(i), pD(i) and P(i) cover a narrow range
of the related values, obtained at different, pre-assumed starting
points (Vj, Ej). It testifies on account of the opinion that the method
III can be perceived as one providing more stable values of the
related parameters in Eq. (26). Higher/lower S(i) value corresponds
to lower/higher pD(i) value, at any point (pAi, Ei), see Fig. 7.

The pD value obtained for calcium ISE can be referred to ones
provided by manufacturers and found in earlier literature. It is par-
ticularly stated that the linearity range covers the pCa-interval of
0–6.3 [22,23] or 0–5.3 [24], although earlier literature stated on
the linearity up to pCa = 8 and curvilinear range up to pCa = 11, at
0.1 mol/L ionic strength [25].

5. Final comments

In this paper, several calibration methods referred to fluoride
and calcium ISE’s and redox indicator electrodes are suggested and
tested in potentiometric titrations, realized according to multiple
standard subtraction (MSS) or multiple standard addition (MSA)
methods. The MSS was referred to calibration of platinum elec-
trode, based on the titration of Fe(II) species with permanganate in
acidic (H2SO4) media [2], whereas the MSA was applied for calibra-
tion of the ISE’s, both in linear and nonlinear ranges.

Method I is based on calculation of S(i) values at particular
points i = 1, . . ., N (Eq. (20)) of the titration made according to MSA
method, referred to the system with fluoride ISE, in its linear range,
at equal TISAB concentrations in D and T. Although the Sj values
are scattered, the mean S-value (Eq. (23)) is located close to the
one obtained according to a method [2] based on calculation of R2

for linear correlation coefficient (R) value (Eq. (33)). The R2 value
closest to 1 indicates the real S-value.

Method II has been applied to simultaneous determination of
S and Veq according to MSS. The results obtained for S and Veq

(Table 2) are close to ones obtained on the basis of Fig. 5.
When applying Eq. (26) for nonlinear range of an ISE, the set of
points {(pAj, Ej) | j = 1, . . ., N} should involve the points both from
nonlinear and linear pA ranges of the function E = E(pA). If this set
refers only to higher pA values, the |S| value in Eq. (26) may appear
to be distinctly smaller than |S0| value calculated from Eq. (6). To
cover more wider pA interval, with more dense first points (pA1, E1),
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lationships found for D + T system specified in Table 1, No. 2.
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ig. 7. The plots for calcium ISE in 0.1 mol/L KCl medium. The points (♦): (a) {(V(j
i = 1, . . ., N}, plotted for calcium ISE; V0 = 2, C0 = 5 × 10−6, C = 5 × 10−4, N = 60, 25.0 ◦C
= 27.798, pD = 6.378.

pA2, E2), . . ., two (or three) D + T systems, e.g. with (C0, C) = (10−6,
0−5), (10−6, 10−4), (10−5, 10−3) should be applied. All the titra-
ions should be made at identical a priori conditions (ceteris paribus:
emperature, concentration of buffering or basal electrolyte, pH)
nd the collected results {(Vj, Ej) | j = 1, . . ., N} are taken for calcula-
ions. At high pC value, the first points are disturbed rarely or do
ot refer to low pA values, where the nonlinear course of the curve
26) occurred. One can also apply C0 = 0. The results are more stable
n presence of basal/buffering electrolyte.

It was also stated that the Ivaska method [18] is not adaptable
or handling the data obtained according to the MSS method. Two

odifications of the original Li method [13] enabled to overcome
he shortages inherent in the original version of this method. How-
ver, the results for S and Veq are punitive, when compared with
nes obtained according to other methods considered in this paper
when referred to S) and expected from preliminary tests (Veq).

ppendix 1. Derivation of Eq. (4)
Eq. (1) can be rewritten into the form

E

S
+ log(V0 + V) = P

S
+ log(C0V0 + CV)
| j = 1, . . ., N}, (b) {(pCa(j), E(j)) | j = 1, . . ., N}, (c) {(i, R(i)) | i = 1, . . ., N}, (d) {(i, pD(i))
b) the related approximating line (Eq. (26)) plotted at mean values for: P = 441.556,

Applying the identity x ≡ log(10x), we have

y = (V0 + V)10E/S = (C0V0 + CV)10P/S

yj = (V0 + Vj)10Ej/S = a0 + a1 × Vj + εj (1.1)

where a0 = C0V0 × 10P/S, a1 = C × 10P/S are calculated from (1.1)
according to LS. Then

C0 = CX = C

V0

a0

a1
= C

V0

∑
yj

∑
Vj

2 − ∑
yjVj

∑
Vj

N
∑
yjVj −

∑
yj

∑
Vj

(1.2)

where
∑

=
∑N

j−1 . If Vj+1 − Vj =�V, then Vj = (j − 1)�V and from
(1.2) we get Eqs. (4) and (5).

Appendix 2. Derivation of equations (12) and (16)
Applying the function (7) for two consecutive points (Vj, Ej) and
(Vj+1, Ej+1), we get

Vj+1

Vj
10−(Ej+1−Ej)/S = Veq − Vj+1

Veq − Vj
(2.1)
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hen, applying (10) and (11), we have

j = Veq − Vj+1

Veq − Vj
eqj/� (2.2)

here  j and qj are specified in Eq. (13). Applying in (2.2) the
pproximation (14), where x = qj/�, gives the regression equation

j = Veq − Vj+1

Veq − Vj

(
1 + qj

�

)
+ εj (2.3)

nd then Eq. (12). Applying (15) in (2.2), on similar way we get Eq.
16).

ppendix 3. Derivation of Eqs. (20) and (21)

Applying Eq. (1) for two consecutive points, (Vj, Ej) and (Vj+1,
j+1), we have, by turns:

j = P + S log
C0V0 + CVj
V0 + Vj

, Ej+1 = P + S log
C0V0 + CVj+1

V0 + Vj+1

Ej+1 − Ej)
ln 10
S

= ln

(
1 + C(Vj+1 − Vj)

C0V0 + CVj

)
− ln

(
1 + Vj+1 − Vj

V0 + Vj

)

(3.1)

hen using the approximation [6,10]

n(1 + x) = x

1 + (x/2)
(3.2)

n (3.1), we have, by turns,

Ej+1 − Ej)
ln 10
S

= C(Vj+1 − Vj)/(C0V0 + CVj)
1 + (1/2)(C(Vj+1 − Vj)/(C0V0 + CVj))

− (Vj+1 − Vj)/(V0 + Vj)
1 + (1/2)((Vj+1 − Vj)/(V0 + Vj))

Ej+1 − Ej)
ln 10
S

= C(Vj+1 − Vj)
C0V0 + CV∗

j

− Vj+1 − Vj
V0 + V∗

j

V0 + V∗
j

V0

Ej+1 − Ej
Vj+1 − Vj

ln 10
S

= C − C0

C0V0 + CV∗
j

(3.3)

Eq. (3.3) gives (20) and (21).
One can also assume that only C is known beforehand. Rewriting

3.3) into the regression equation

j = a− b�j + εj (3.4)

here yj = C�jVj*, S(C − C0) = a, C0V0 = b, one can calculate a and b
ccording to LS method, and then

0 = b

V0
, S = a

C − C0
= aV0

CV0 − b (3.5)

ppendix 4. Derivation of equations (24) and (25)
From (2.1) we have, by turns,

n
Vj+1

Vj
− ln 10(Ej+1 − Ej)

1
S

= ln
Veq − Vj+1

Veq − Vj
(4.1)

[
[
[
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ln

(
1 + Vj+1 − Vj

Vj

)
− ln 10(Ej+1 − Ej)

1
S

= ln

(
1 − Vj+1 − Vj

Veq − Vj

)
(4.2)

Then applying (3.2) in (4.2), we get, by turns

(Vj+1 − Vj)/Vj
1 + (1/2)(Vj+1 − Vj)/Vj

− ln 10(Ej+1 − Ej)
1
S

= − (Vj+1 − Vj)/(Veq − Vj)
1 − (1/2)(Vj+1 − Vj)/(Veq − Vj)

Vj+1 − Vj
V∗
j

+ Vj+1 − Vj
Veq − V∗

j

= ln 10(Ej+1 − Ej)
1
S

1
V∗
j

Vj+1 − Vj
Ej+1 − Ej

= ln 10
S

Veq − V∗
j

Veq
(4.3)

where Vj* is expressed by Eq. (22). Denoting

yj = 1
V∗
j

Vj+1 − Vj
Ej+1 − Ej

; a = ln 10
S

; b = ln 10
SVeq

(4.4)

from (4.3) we get the regression equation:

yj = a− bV∗
j + εj (4.5)

where a and b are found according to LS method. Then we calculate:
Veq = a/b (Eq. (24)) and S (Eq. (25)).
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